Modelling 1 SUMMER TERM 2020

LECTURE 5

Basic Numerical Calculus

Overview

Objective

- Simple "finite-difference" numerics
 - Helps understanding the theory
- More precision: Interpolation
- More sophisticated: "linear ansatz"
 - Basis for "finite elements"
- Monte-Carlo integration
 - Accuracy mediocre
 - Suitable for high-dimensional problems
 - No "aliasing problems" (later chapter)

Approximation of Function Spaces

Parametrization as array of numbers

- Sample function f on discrete grid
- Store sample values
- Use this as intuition: $\int \rightarrow \sum_{i} \frac{d}{dx} \rightarrow \frac{f_i f_{i-1}}{h}$

Differentiation

Discrete Representation

Function f

Think of this:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$f = (y_1, ..., y_n)$$
$$f'(x_i) \approx \frac{y_i - y_{i-1}}{h}$$

Integration and Differentiation

$$F(x_n) \approx h \cdot \sum_{i=0}^n y_i$$

$$f'(x_n) \approx \frac{y_n - y_{n-1}}{h}$$

Fundamental Theorem of Calculus

$$\frac{d}{dx}F(x) = f(x)$$
discrete:
$$\frac{1}{h}\left[h \cdot \sum_{i=0}^{n} y_i - h \cdot \sum_{i=0}^{n-1} y_i\right] = y_n$$

Integration

Integral

Integral of a function

- Function $f: \mathbb{R} \to \mathbb{R}$
- Integral

$$\int_{a}^{b} f(x) dx$$

measures signed area under curve

Integral

Numerical Approximation

- Sum up a series of approximate shapes
- (Riemannian) Definition: limit for baseline → zero
- Intuition: Sum of numbers in array

Multi-Dimensional Integral

Integration in higher dimensions

- Functions $f: \mathbb{R}^n \to \mathbb{R}$
- Tessellate domain and sum up cuboids

Surface Integrals

Line / Surface / Volume / Hypervolume Elements

$$\int_{\mathcal{S}} f(\mathbf{x}) d\mathbf{x} = \lim_{\text{smaller}} \sum_{i=1}^{n} f(\mathbf{x}_i) \cdot |\nabla_i|$$

More Precision (higher consistency order)

Discrete Representation

$$f = (y_1, ..., y_n)$$
$$f'(x_i) \approx \frac{y_i - y_{i-1}}{h}$$

$$f = (y_1, ..., y_n)$$
$$f'(x_i) \approx \frac{y_{i+1} - y_{i-1}}{2h}$$

Recipe: Fit polynomial, then take its (analytic) derivative

Integral

Recipe

- Same: Fit polynomial locally
- Compute its integral (analytically)
- Converges more quickly for smooth enough functions

Consistency Order

Numerical approximation

- has consistency order k" means
- For polynomials of degree k, the result is exact
- For smooth functions, convergence is faster
 - In non-smooth case, high consistency order can have adverse effect
- Too high order becomes unstable (we'll see later why)
 - Stay in the lower single digits

Noisy Data

Differentiation is ill-posed (sensitive)

Smoothed

Estimate derivatives in noisy data

- Filter the data first
- E.g., running average over neighbors
- For example: Gaussian filter kernel

Linear Ansatz

Approximation of Function Spaces

Parametrization with a linear ansatz

$$f(x) = \sum_{i=1}^{d} \lambda_{i} b_{i}(x) \rightarrow \begin{cases} \frac{d}{dx} f(x) = \sum_{i=1}^{d} \lambda_{i} b_{i}'(x) \\ \int_{\Omega} f(x) dx = \sum_{i=1}^{d} \lambda_{i} \int_{\Omega} b_{i}(x) dx \end{cases}$$

Monte-Carlo Integration

Monte-Carlo Integration

Monte-Carlo integration

- Black-box integrator
- Easy to code/understand,
 - Generally poor accuracy
- But suitable for high-dimensional problems
 - Often the only option for large dimension!
- No "aliasing problems"
 - We will need this later (signal processing)
- Conceptually interesting / important
 - "Importance sampling" is in general a useful idea

Numerical Integration

Numerical Integration

- Standard (Rieman integral):
 - Grid in Ω , sum of cuboids
- Monte-Carlo:
 - Random points $x_i \in \Omega$
 - Compute average $\times |\Omega|$

Monte-Carlo Approach

Formally:

mally:
$$\int_{\Omega} f(x) dx \approx \frac{|\Omega|}{n} \sum_{i=1}^{n} \frac{\text{"primary estimator"}}{f(x_i)}$$
"secondary estimator"

Sampling

- n random points
 - independently chosen (iid)
 - uniformly distributed on Ω
- Expected value is true integral

Question: How good is the estimate?

Quality of the estimate

Law of large numbers

• Probability of finite deviations $\epsilon > 0$ from expected value converges to zero

Variance

$$\operatorname{Var}\left(\frac{|\Omega|}{n}\sum_{i=1}^{n} f(x_i)\right) \in \mathcal{O}\left(\frac{\sigma^2}{n}\right)$$

Standard deviation

$$\sigma \in \mathcal{O}\left(\frac{\sigma}{\sqrt{n}}\right)$$

Proof

Computing the Variance:

$$\operatorname{Var}\left(\frac{|G|}{n}\sum_{i=1}^{n} f(x_{i})\right) = \frac{|G|^{2}}{n^{2}}\operatorname{Var}\left(\sum_{i=1}^{n} f(x_{i})\right)$$

$$= \frac{|G|^{2}}{n^{2}}\sum_{i=1}^{n}\operatorname{Var}\left(f(x_{i})\right) \qquad \text{(Independence)}$$

$$= \frac{|G|^{2}}{n^{2}}\operatorname{Nvar}\left(f\right)$$

$$= \frac{|G|^{2}}{n^{2}}\operatorname{Var}\left(f\right) \in \operatorname{O}\left(\frac{1}{n}\right)$$

(remark: here $G = \Omega$)

Result

Error estimate

$$\sigma \in \mathcal{O}\left(\frac{\sigma}{\sqrt{n}}\right)$$

- Quadruple sample size (×4) to half error (1/2)
- Typical convergence behavior:
 - Quick first estimate
 - Long computation for good (noise-free) result

Does It Make Sense?

When is Monte-Carlo integration useful?

- Error depends on variance of primary estimator
- Then goes down with sample size

Error is totally independent of

- Dimension of Ω
- Structure of f (discontinuities etc.)
- Structure of Ω
 - Just need to be able to sample it

Higher Dimensions

Classic application domain

- High-dimensional integration domains
- Let's say, $\Omega = [0,1]^{20}$

Standard Integration

- Regular grid, k^{20} samples
- Don't even try this...

Higher Dimensions

Monte-Carlo Approach:

- Sample n points
- Compute average
- Multiply with domain volume

Property

- Works if variance is not too large
- Dimension irrelevant

Example

When is Monte-Carlo integration possible?

optimal – no variance

moderate variance – MC-int. possible

large variance – not efficient

General observation

 Randomized algorithms are efficient if the crucial information is easy to find by random trials

Numerical Example

Averaging Samples:

- n = 100 samples
- Fraction q of the domain with value 0.5/q
- Showing multiple pixels

Example

Speed of convergence:

n = 1

- Now growing n
- Pixel: 50% black / 50% white

n = 10

Growing sample size

Observation

 Large sample size required before noise becomes invisible n = 100

n = 1000

n = 10000

Variance Reduction

Variance Reduction

Two reasons for long compute times

Problem #1: Importance Sampling

Problem #2: Stratification

Variance Reduction

Two reasons for long compute times

Problem #1: Importance Sampling

Problem #2: Stratification

Importance Sampling

Importance Sampling

- Idea: More samples in important regions
 - Need to weight differently to avoid bias
- New estimator
 - Choose sampling density p on Ω

$$\int_{\Omega} f(x) dx \approx \frac{1}{n} \sum_{i=1}^{n} \frac{f(x_i)}{p(x_i)} \ (p(x) > 0 \ \forall x \in \Omega)$$

- (Note: $|\Omega|$ factor not required here.)
- Sampling density p controls importance

How to choose p?

What is a good importance function?

- Idea: Minimize errors
- Large values lead to bigger errors

Hypothetical optimum

- $p \sim |f|$ (zero variance for positive f)
 - Not practical
 - Would need to know integral already

In practice

- p similar to f
- Often: $f = g \cdot h$ with known g. Choose $p \sim g$.

Illustrative example

Variance Reduction

Two reasons for long compute times

Problem #1: Importance Sampling

Problem #2: Stratification

Stratification

Problem

• Variance of average of *iid* samples always converges with $\mathcal{O}(\sqrt{n})$

Hence

- Non-independent sampling
- Targeting samples
 - Goal uniform coverage
- Divide Ω in regions ("strati")
- One sample point per region

Jittered Sampling

Example: "Jittered Grid"

- Divide Ω in regular grid
 - For example: subpixels
- Random point per cell
- Rest of the algorithm unchanged

•		•
	•	
		•
•	•	
	•	•
•		

Improved versions

- Poisson-disc sampling
- Halton sequences
- Combination with importance sampling & adaptive sampling

Consequences

Looking at one pixel

Random image

ndom ima
$$\mathcal{O}\left(n^{-\frac{1}{2}}\right)$$

sharp edge
$$\mathcal{O}\left(n^{-\frac{3}{4}}\right)$$

smooth image

$$\mathcal{O}(n^{-1})$$

(Lipschitz-smooth)

(c.f. Mitchel: "Consequences of Stratified Sampling in Graphics", Siggraph 96)

Example: sharp boundary

Standard MC-Integration

$$\operatorname{Var}\left(\frac{1}{n}\sum_{i=1}^{n} f(x_i)\right) = \frac{1}{n}\operatorname{Var}\left(f(x_i)\right) \Rightarrow \mathcal{O}\left(n^{-\frac{1}{2}}\right)$$

Stratified $(n = k^2)$:

$$\operatorname{Var}\left(\frac{1}{k^2}\sum_{i=1}^n f(x_i)\right)$$

$$= \frac{1}{k^4} \left(\underbrace{\sum_{i=1}^{\mathcal{O}(k)} \operatorname{Var}(f(x_{j_i}) + \sum_{i=1}^{\mathcal{O}(k^2)} \operatorname{Var}(f(x_{j_i}))}_{\leq c \text{ (const.)}} + \underbrace{\sum_{i=1}^{\mathcal{O}(k^2)} \operatorname{Var}(f(x_{j_i}))}_{=0} \right)$$

$$=\frac{1}{k^3}c\in\mathcal{O}\left(n^{-\frac{3}{2}}\right)\Rightarrow\sigma\in\mathcal{O}\left(n^{-\frac{3}{4}}\right)$$

purely random

stratified

Example

random rays (per pixel)

jittered grid

Combination

Combination of Stratification & Importance

- Varying sampling density
- Example:
 - 1D grid morphed according to distribution function
 - Tensor product grid (i.e., apply to x and y coordinate)
 - Adaptive jittering