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LECTURE S5
Basic Numerical Calculus

Michael Wand - Institut fur Informatik - Michael.Wand@uni-mainz.de



Overview

Objective

= Simple "finite-difference” numerics
= Helps understanding the theory

= More precision: Interpolation

= More sophisticated: “linear ansatz”
= Basis for “finite elements”

= Monte-Carlo integration
= Accuracy mediocre
= Suitable for high-dimensional problems
= No “aliasing problems” (later chapter)



Approximation of Function Spaces

Parametrization as array of numbers
= Sample function f on discrete grid
= Store sample values

= Use this as intuition: [y, diﬁfi—r{i—l
X



Differentiation



Discrete Representation

Function f Think of this:
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Integration and Differentiation
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Fundamental Theorem of Calculus
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Integration



Integral
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Integral of a function
= Function f:R—-> R
= |ntegral

be (x)dx

measures signed area under curve



Integral
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Numerical Approximation
= SumM up a series of approximate shapes

= (Riemannian) Definition: limit for baseline — zero
= [ntuition: Sum of numbers in array



Multi-Dimensional Integral

Integration in higher dimensions
= Functions f: R" - R

= Tessellate domain and sum up cuboids




Surface Integrals

Line / Surface / Volume / Hypervolume Elements

v J Foox = lim, 2,00 19
i—1

function f on surface §
f:S->R




More Precision
(higher consistency order)



Discrete Representation

Linear: Quadratic:
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Recipe: Fit polynomial, then take its (analytic) derivative



Integral

Constant \ Linear
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Recipe
= Same: Fit polynomial locally
= Compute its integral (analytically)
= Converges more quickly for smooth enough functions



Consistency Order

Numerical approximation
= "has consistency order k”
Means

= For polynomials of degree K,
the result is exact

= For smooth functions, convergence is faster

= In non-smooth case, high consistency order can have
adverse effect

= Too high order becomes unstable (we'll see later why)
= Stay in the lower single digits



Noisy Data



Differentiation is ill-posed (sensitive)
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Preprocesed by running average

Estimate derivatives in noisy data

= Filter the data first

= E.g., running average over neighbors
= For example: Gaussian filter kernel



Linear Ansatz



Approximation of Function Spaces

~ A~ N N
X // X | X /X X
ALK XD

T T 1

Parametrization with a linear ansatz
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Monte-Carlo Integration




Monte-Carlo Integration

Monte-Carlo integration
= Black-box integrator

Fasy to code/understand,
= Generally poor accuracy

But suitable for high-dimensional problems
= Often the only option for large dimension!

No “aliasing problems”
= We will need this later (signal processing)

Conceptually interesting / important
= “Importance sampling” is in general a useful idea



Numerical Integration
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Numerical Integration

= Standard (Rieman integral):
= Gridin Q, sum of cuboids
= Monte-Carlo:

= Random points x; € Q
= Compute average x |Q]



Monte-Carlo Approach

Formall ?
Y- | es%%?g N f (xl-)
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Sampling estimator

= n random points

« independently chosen (iid)
= uniformly distributed on Q

= Expected value is true integral

Question: How good is the estimate?



Quality of the estimate

Law of large numbers

= Probability of finite deviations € > 0 from expected
value converges to zero

Variance
101 o2
Var (7; f(XJ) =N, (7>

Standard deviation



Proof

Computing the Variance:

2

(1G V|G|
T )

Var(i f(xi)J

_ lel 3 Var(f(x,)) (Independence)

G|’
= — nVar(f)

(remark: here G = ()



Result

o)

= Quadruple sample size (x4) to half error (1/2)

Error estimate

= Typical convergence behavior:
= Quick first estimate
= Long computation for good (noise-free) result



Does It Make Sense?

When is Monte-Carlo integration useful?
= Error depends on variance of primary estimator
= Then goes down with sample size

Error is totally independent of
= Dimension of O
= Structure of f (discontinuities etc.)

= Structure of Q)
= Just need to be able to sample it



Higher Dimensions

Classic application domain ! -
N
= High-dimensional integration [ \\. y
domains N, T
= Let's say, (1 =[0,1]% | ’
Rieman-sum

Standard Integration
= Regular grid, k20 samples

= Don't even try this...

v

k subdivisions
per axis




Higher Dimensions

Monte-Carlo Approach: o o e /
= Sample n points } Ok
= Compute average . .
= Multiply with domain volume : /
Property n sample points
(irregular)

= Works if variance is not too large
= Dimension irrelevant



Example

When is Monte-Carlo integration possible?

bright spot

intensity

5000 on
10000

of the area

optimal — moderate variance — large variance —
no variance MC-int. possible not efficient

General observation

= Randomized algorithms are efficient if the
crucial information is easy to find by random trials



Numerical Example

qg=0.5

Averaging Samples:
= n =100 samples
= Fraction g of the domain with value 0.5/g
= Showing multiple pixels



Example

Speed of convergence:
= Now growing n
= Pixel: 50% black / 50% white
= Growing sample size

Observation

= Large sample size required
before noise becomes invisible

n="10000



Variance Reduction




Variance Reduction
Two reasons for long compute times

Problem #1
primary estimator

(U(f)/ variance

n }\ Problem #2
slow convergence of
secondary estimator

Problem #1: Importance Sampling
Problem #2: Stratification
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Importance Sampling

Importance Sampling

= |dea: More samples in important regions
= Need to weight differently to avoid bias

= New estimator
= Choose sampling density p on ()
10 £ ()

e =22

(p(x) >0Vx € Q)

= (Note: |Q| factor not required here.)

= Sampling density p controls importance



How to choose p?

What is a good importance function?
= |dea: Minimize errors
= Large values lead to bigger errors

Hypothetical optimum

= p ~ |f]| (zero variance for positive f)
= Not practical
= Would need to know integral already

In practice
= p Ssimilarto f
= Often: f = g - h with known g. Choosep ~ g.



[llustrative example

New York




Variance Reduction
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Stratification

Problem

= Variance of average of /id samples always converges

with O (yn)

Hence

= Non-independent sampling
= Targeting samples

= Goal uniform coverage
= Divide Q in regions (,strati")

= One sample point per region



Jittered Sampling

Example: ,Jittered Grid“ .
= Divide Q in regular grid

= For example: subpixels

= Random point per cell o

= Rest of the algorithm
unchanged

Improved versions
= Poisson-disc sampling
= Halton sequences

= Combination with importance sampling
& adaptive sampling



Consequences

Looking at one pixel
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Random image sharp edge smooth image
1 3
v, (n_ﬁ) O (n_z) o(n™1)

(Lipschitz-smooth)

(c.f. Mitchel: ,Consequences of Stratified Sampling in Graphics”, Siggraph 96)



Example: sharp boundary

Standard MC-Integration purely random

Var <%Z f(xi)> = %Var(f(xi)) = O(n_%)

Stratified (n = k2): :

1 v ~
Var (FZ f(xi)> stratified

-t ) M

<c (cbnst.) =0

= ic € O(n_%) = g € O(n_%)

3 < . >
k k regions,
n=k?




jittered grid

random rays (per pixel)










Combination

Combination of Stratification & Importance
= Varying sampling density

= Example:
= 1D grid morphed according to distribution function
= Tensor product grid (i.e., apply to x and y coordinate)
= Adaptive jittering



